數(shù)學(xué)常用的數(shù)學(xué)思想方法主要有:用字母表示數(shù)的思想,數(shù)形結(jié)合的思想,轉(zhuǎn)化思想 (化歸思想),分類思想,類比思想,函數(shù)的思想,方程的思想,無逼近思想等等。
1.用字母表示數(shù)的思想:這是基本的數(shù)學(xué)思想之一 .在代數(shù)第一冊第二章“代數(shù)初步知識”中,主要體現(xiàn)了這種思想。
2.數(shù)形結(jié)合:是數(shù)學(xué)中最重要的,也是最基本的思想方法之一,是解決許多數(shù)學(xué)問題的有效思想?!皵?shù)缺形時少直觀,形無數(shù)時難入微”是我國著名數(shù)學(xué)家華羅庚教授的名言,是對數(shù)形結(jié)合的作用進行了高度的概括。
3.轉(zhuǎn)化思想:在整個初中數(shù)學(xué)中,轉(zhuǎn)化(化歸)思想一直貫穿其中。轉(zhuǎn)化思想是把一個未知(待解決)的問題化為已解決的或易于解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數(shù)學(xué)基本思想方法之一。
4.分類思想:有理數(shù)的分類、整式的分類、實數(shù)的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關(guān)系、直線與圓的位置關(guān)系,圓與圓的位置關(guān)系等都是通過分類討論的。
5.類比:類比推理在人們認識和改造客觀世界的活動中具有重要意義.它能觸類旁通,啟發(fā)思考,不僅是解決日常生活中大量問題的基礎(chǔ),而且是進行科學(xué)研究和發(fā)明創(chuàng)造的有力工具.
6.函數(shù)的思想 :辯證唯物主義認為,世界上一切事物都是處在運動、變化和發(fā)展的過程中,這就要求我們教學(xué)中重視函數(shù)的思想方法的教學(xué)。
7.方程:是初中代數(shù)的主要內(nèi)容.初中階段主要學(xué)習(xí)了幾類方程和方程組的解法,在初中階段就要形成方程的思想.所謂方程的思想,就是突出研究已知量與未知量之間的等量關(guān)系,通過設(shè)未知數(shù)、列方程或方程組,解方程或方程組等步驟,達到求值目的的解題思路和策略,
擴展資料:
函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題。方程思想,是從問題的數(shù)量關(guān)系入手,運用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型(方程、不等式、或方程與不等式的混合組),然后通過解方程(組)或不等式(組)來使問題獲解。
從問題的整體性質(zhì)出發(fā),突出對問題的整體結(jié)構(gòu)的分析和改造,發(fā)現(xiàn)問題的整體結(jié)構(gòu)特征,善于用“集成”的眼光,把某些式子或圖形看成一個整體,把握它們之間的關(guān)聯(lián),進行有目的的、有意識的整體處理。整體思想方法在代數(shù)式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應(yīng)用。
參考資料:百度百科-數(shù)學(xué)思想
中學(xué)數(shù)學(xué)重要數(shù)學(xué)思想 函數(shù)方程思想 函數(shù)方程思想就是用函數(shù)、方程的觀點和方法處理變量或未知數(shù)之間的關(guān)系,從而解決問題的一種思維方式,是很重要的數(shù)學(xué)思想。
1.函數(shù)思想:把某變化過程中的一些相互制約的變量用函數(shù)關(guān)系表達出來,并研究這些量間的相互制約關(guān)系,最后解決問題,這就是函數(shù)思想; 2.應(yīng)用函數(shù)思想解題,確立變量之間的函數(shù)關(guān)系是一關(guān)鍵步驟,大體可分為下面兩個步驟:(1)根據(jù)題意建立變量之間的函數(shù)關(guān)系式,把問題轉(zhuǎn)化為相應(yīng)的函數(shù)問題;(2)根據(jù)需要構(gòu)造函數(shù),利用函數(shù)的相關(guān)知識解決問題;(3)方程思想:在某變化過程中,往往需要根據(jù)一些要求,確定某些變量的值,這時常常列出這些變量的方程或(方程組),通過解方程(或方程組)求出它們,這就是方程思想; 3.函數(shù)與方程是兩個有著密切聯(lián)系的數(shù)學(xué)概念,它們之間相互滲透,很多方程的問題需要用函數(shù)的知識和方法解決,很多函數(shù)的問題也需要用方程的方法的支援,函數(shù)與方程之間的辯證關(guān)系,形成了函數(shù)方程思想。 數(shù)形結(jié)合思想 數(shù)形結(jié)合是中學(xué)數(shù)學(xué)中四種重要思想方法之一,對于所研究的代數(shù)問題,有時可研究其對應(yīng)幾何的性質(zhì)使問題得以解決(以形助數(shù));或者對于所研究的幾何問題,可借助于對應(yīng)圖形的數(shù)量關(guān)系使問題得以解決(以數(shù)助形),這種解決問題的方法稱之為數(shù)形結(jié)合。
1.數(shù)形結(jié)合與數(shù)形轉(zhuǎn)化的目的是為了發(fā)揮形的生動性和直觀性,發(fā)揮數(shù)的思路的規(guī)范性與嚴密性,兩者相輔相成,揚長避短。 2.恩格斯是這樣來定義數(shù)學(xué)的:“數(shù)學(xué)是研究現(xiàn)實世界的量的關(guān)系與空間形式的科學(xué)”。
這就是說:數(shù)形結(jié)合是數(shù)學(xué)的本質(zhì)特征,宇宙間萬事萬物無不是數(shù)和形的和諧的統(tǒng)一。因此,數(shù)學(xué)學(xué)習(xí)中突出數(shù)形結(jié)合思想正是充分把握住了數(shù)學(xué)的精髓和靈魂。
3.數(shù)形結(jié)合的本質(zhì)是:幾何圖形的性質(zhì)反映了數(shù)量關(guān)系,數(shù)量關(guān)系決定了幾何圖形的性質(zhì)。 4.華羅庚先生曾指出:“數(shù)缺性時少直觀,形少數(shù)時難入微;數(shù)形結(jié)合百般好,隔裂分家萬事非?!?/p>
數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法的應(yīng)用大致分為兩種情形:或借助于數(shù)的精確性來闡明形的某些屬性,或者借助于形的幾何直觀性來闡明數(shù)之間的某種關(guān)系. 5.把數(shù)作為手段的數(shù)形結(jié)合主要體現(xiàn)在解析幾何中,歷年高考的解答題都有關(guān)于這個方面的考查(即用代數(shù)方法研究幾何問題)。而以形為手段的數(shù)形結(jié)合在高考客觀題中體現(xiàn)。
6.我們要抓住以下幾點數(shù)形結(jié)合的解題要領(lǐng): (1) 對于研究距離、角或面積的問題,可直接從幾何圖形入手進行求解即可; (2) 對于研究函數(shù)、方程或不等式(最值)的問題,可通過函數(shù)的圖象求解(函數(shù)的零點,頂點是關(guān)鍵點),作好知識的遷移與綜合運用; (3) 對于以下類型的問題需要注意:可分別通過構(gòu)造距離函數(shù)、斜率函數(shù)、截距函數(shù)、單位圓x2+y2=1上的點及余弦定理進行轉(zhuǎn)化達到解題目的。 分類討論的數(shù)學(xué)思想 分類討論是一種重要的數(shù)學(xué)思想方法,當問題的對象不能進行統(tǒng)一研究時,就需要對研究的對象進行分類,然后對每一類分別研究,給出每一類的結(jié)果,最終綜合各類結(jié)果得到整個問題的解答。
1.有關(guān)分類討論的數(shù)學(xué)問題需要運用分類討論思想來解決,引起分類討論的原因大致可歸納為如下幾種: (1)涉及的數(shù)學(xué)概念是分類討論的; (2)運用的數(shù)學(xué)定理、公式、或運算性質(zhì)、法則是分類給出的; (3)求解的數(shù)學(xué)問題的結(jié)論有多種情況或多種可能性; (4)數(shù)學(xué)問題中含有參變量,這些參變量的不同取值導(dǎo)致不同的結(jié)果的; (5)較復(fù)雜或非常規(guī)的數(shù)學(xué)問題,需要采取分類討論的解題策略來解決的。 2.分類討論是一種邏輯方法,在中學(xué)數(shù)學(xué)中有極廣泛的應(yīng)用。
根據(jù)不同標準可以有不同的分類方法,但分類必須從同一標準出發(fā),做到不重復(fù),不遺漏 ,包含各種情況,同時要有利于問題研究。 化歸與轉(zhuǎn)化思想 所謂化歸思想方法,就是在研究和解決有關(guān)數(shù)學(xué)問題時采用某種手段將問題通過變換使之轉(zhuǎn)化,進而達到解決的一種方法。
一般總是將復(fù)雜的問題通過變化轉(zhuǎn)化為簡單的問題,將難解問題通過變換轉(zhuǎn)化為容易求解的問題,將未解決的問題轉(zhuǎn)化為已解決的問題。 立體幾何中常用的轉(zhuǎn)化手段有 1.通過輔助平面轉(zhuǎn)化為平面問題,把已知元素和未知元素聚集在一個平面內(nèi),實現(xiàn)點線、線線、線面、面面位置關(guān)系的轉(zhuǎn)化; 2.平移和射影,通過平移或射影達到將立體幾何問題轉(zhuǎn)化為平面問題,化未知為已知的目的; 3.等積與割補; 4.類比和聯(lián)想; 5.曲與直的轉(zhuǎn)化; 6.體積比,面積比,長度比的轉(zhuǎn)化; 7.解析幾何本身的創(chuàng)建過程就是“數(shù)”與“形”之間互相轉(zhuǎn)化的過程。
解析幾何把數(shù)學(xué)的主要研究對象數(shù)量關(guān)系與幾何圖形聯(lián)系起來,把代數(shù)與幾何融合為一體。
對于那些成績較差的小學(xué)生來說,學(xué)習(xí)小學(xué)數(shù)學(xué)都有很大的難度,其實小學(xué)數(shù)學(xué)屬于基礎(chǔ)類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學(xué),是一個需要養(yǎng)成良好習(xí)慣的時期,注重培養(yǎng)孩子的習(xí)慣和學(xué)習(xí)能力是重要的一方面,那小學(xué)數(shù)學(xué)有哪些技巧?
一、重視課內(nèi)聽講,課后及時進行復(fù)習(xí).
新知識的接受和數(shù)學(xué)能力的培養(yǎng)主要是在課堂上進行的,所以我們必須特別注意課堂學(xué)習(xí)的效率,尋找正確的學(xué)習(xí)方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和預(yù)測解決問題的思想與教師之間的差異.特別是,我們必須了解基本知識和基本學(xué)習(xí)技能,并及時審查它們以避免疑慮.首先,在進行各種練習(xí)之前,我們必須記住教師的知識點,正確理解各種公式的推理過程,并試著記住而不是采用"不確定的書籍閱讀".勤于思考,對于一些問題試著用大腦去思考,認真分析問題,嘗試自己解決問題.
二、多做習(xí)題,養(yǎng)成解決問題的好習(xí)慣.
如果你想學(xué)好數(shù)學(xué),你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標準,反復(fù)練習(xí)基本知識,然后找一些課外活動,幫助開拓思路練習(xí),提高自己的分析和掌握解決的規(guī)律.對于一些易于查找的問題,您可以準備一個用于收集的錯題本,編寫自己的想法來解決問題,在日常養(yǎng)成解決問題的好習(xí)慣.學(xué)會讓自己高度集中精力,使大腦興奮,快速思考,進入最佳狀態(tài)并在考試中自由使用.
三、調(diào)整心態(tài)并正確對待考試.
首先,主要的重點應(yīng)放在基礎(chǔ)、基本技能、基本方法,因為大多數(shù)測試出于基本問題,較難的題目也是出自于基本.所以只有調(diào)整學(xué)習(xí)的心態(tài),盡量讓自己用一個清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對習(xí)題進行演練,開闊思路,在保證真確的前提下提高做題的速度.對于簡單的基礎(chǔ)題目要拿出二十分的把握去做;難得題目要盡量去做對,使自己的水平能正?;蛘叱0l(fā)揮.
由此可見小學(xué)數(shù)學(xué)的技巧就是多做練習(xí)題,掌握基本知識.另外就是心態(tài),不能見考試就膽怯,調(diào)整心態(tài)很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數(shù)學(xué)的海洋中去.
小學(xué)數(shù)學(xué)思想方法有1、對應(yīng)思想方法 對應(yīng)是人們對兩個集合因素之間的聯(lián)系的一種思想方法,小學(xué)數(shù)學(xué)一般是一一對應(yīng)的直觀圖表,并以此孕伏函數(shù)思想。
如直線上的點(數(shù)軸)與表示具體的數(shù)是一一對應(yīng)。2、假設(shè)思想方法 假設(shè)是先對題目中的已知條件或問題作出某種假設(shè),然后按照題中的已知條件進行推算,根據(jù)數(shù)量出現(xiàn)的矛盾,加以適當調(diào)整,最后找到正確答案的一種思想方法。
假設(shè)思想是一種有意義的想象思維,掌握之后可以使要解決的問題更形象、具體,從而豐富解題思路。3、比較思想方法 比較思想是數(shù)學(xué)中常見的思想方法之一,也是促進學(xué)生思維發(fā)展的手段。
在教學(xué)分數(shù)應(yīng)用題中,教師善于引導(dǎo)學(xué)生比較題中已知和未知數(shù)量變化前后的情況,可以幫助學(xué)生較快地找到解題途徑。4、符號化思想方法 用符號化的語言(包括字母、數(shù)字、圖形和各種特定的符號)來描述數(shù)學(xué)內(nèi)容,這就是符號思想。
如數(shù)學(xué)中各種數(shù)量關(guān)系,量的變化及量與量之間進行推導(dǎo)和演算,都是用小小的字母表示數(shù),以符號的濃縮形式表達大量的信息。如定律、公式、等。
5、類比思想方法 類比思想是指依據(jù)兩類數(shù)學(xué)對象的相似性,有可能將已知的一類數(shù)學(xué)對象的性質(zhì)遷移到另一類數(shù)學(xué)對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。
類比思想不僅使數(shù)學(xué)知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。6、轉(zhuǎn)化思想方法 轉(zhuǎn)化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。
如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲*1/乙。7、分類思想方法 分類思想方法不是數(shù)學(xué)獨有的方法,數(shù)學(xué)的分類思想方法體現(xiàn)對數(shù)學(xué)對象的分類及其分類的標準。
如自然數(shù)的分類,若按能否被2整除分奇數(shù)和偶數(shù);按約數(shù)的個數(shù)分質(zhì)數(shù)和合數(shù)。又如三角形可以按邊分,也可以按角分。
不同的分類標準就會有不同的分類結(jié)果,從而產(chǎn)生新的概念。對數(shù)學(xué)對象的正確、合理分類取決于分類標準的正確、合理性,數(shù)學(xué)知識的分類有助于學(xué)生對知識的梳理和建構(gòu)。
8、集合思想方法 集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數(shù)學(xué)問題或非純數(shù)學(xué)問題的思想方法。小學(xué)采用直觀手段,利用圖形和實物滲透集合思想。
在講述公約數(shù)和公倍數(shù)時采用了交集的思想方法。9、數(shù)形結(jié)合思想方法 數(shù)和形是數(shù)學(xué)研究的兩個主要對象,數(shù)離不開形,形離不開數(shù),一方面抽象的數(shù)學(xué)概念,復(fù)雜的數(shù)量關(guān)系,借助圖形使之直觀化、形象化、簡單化。
另一方面復(fù)雜的形體可以用簡單的數(shù)量關(guān)系表示。在解應(yīng)用題中常常借助線段圖的直觀幫助分析數(shù)量關(guān)系。
10、統(tǒng)計思想方法:小學(xué)數(shù)學(xué)中的統(tǒng)計圖表是一些基本的統(tǒng)計方法,求平均數(shù)應(yīng)用題是體現(xiàn)出數(shù)據(jù)處理的思想方法。11、極限思想方法:事物是從量變到質(zhì)變的,極限方法的實質(zhì)正是通過量變的無限過程達到質(zhì)變。
在講“圓的面積和周長”時,“化圓為方”“化曲為直”的極限分割思路,在觀察有限分割的基礎(chǔ)上想象它們的極限狀態(tài),這樣不僅使學(xué)生掌握公式還能從曲與直的矛盾轉(zhuǎn)化中萌發(fā)了無限逼近的極限思想。12、代換思想方法:他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。
如學(xué)校買了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?13、可逆思想方法:它是邏輯思維中的基本思想,當順向思維難于解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。
14、化歸思維方法:把有可能解決的或未解決的問題,通過轉(zhuǎn)化過程,歸結(jié)為一類以便解決可較易解決的問題,以求得解決,這就是“化歸”。而數(shù)學(xué)知識聯(lián)系緊密,新知識往往是舊知識的引申和擴展。
讓學(xué)生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。15、變中抓不變的思想方法:在紛繁復(fù)雜的變化中如何把握數(shù)量關(guān)系,抓不變的量為突破口,往往問了就迎刃而解。
如:科技書和文藝書共630本,其中科技書20%,后來又買來一些科技書,這時科技書占30%,又買來科技書多少本?16、數(shù)學(xué)模型思想方法:所謂數(shù)學(xué)模型思想是指對于現(xiàn)實世界的某一特定對象,從它特定的生活原型出發(fā),充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設(shè),它是把生活中實際問題轉(zhuǎn)化為數(shù)學(xué)問題模型的一種思想方法。培養(yǎng)學(xué)生用數(shù)學(xué)的眼光認識和處理周圍事物或數(shù)學(xué)問題乃數(shù)學(xué)的最高境界,也是學(xué)生高數(shù)學(xué)素養(yǎng)所追求的目標。
17、整體思想方法:對數(shù)學(xué)問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法。
中學(xué)數(shù)學(xué)重要數(shù)學(xué)思想 函數(shù)方程思想 函數(shù)方程思想就是用函數(shù)、方程的觀點和方法處理變量或未知數(shù)之間的關(guān)系,從而解決問題的一種思維方式,是很重要的數(shù)學(xué)思想。
1.函數(shù)思想:把某變化過程中的一些相互制約的變量用函數(shù)關(guān)系表達出來,并研究這些量間的相互制約關(guān)系,最后解決問題,這就是函數(shù)思想; 2.應(yīng)用函數(shù)思想解題,確立變量之間的函數(shù)關(guān)系是一關(guān)鍵步驟,大體可分為下面兩個步驟:(1)根據(jù)題意建立變量之間的函數(shù)關(guān)系式,把問題轉(zhuǎn)化為相應(yīng)的函數(shù)問題;(2)根據(jù)需要構(gòu)造函數(shù),利用函數(shù)的相關(guān)知識解決問題;(3)方程思想:在某變化過程中,往往需要根據(jù)一些要求,確定某些變量的值,這時常常列出這些變量的方程或(方程組),通過解方程(或方程組)求出它們,這就是方程思想; 3.函數(shù)與方程是兩個有著密切聯(lián)系的數(shù)學(xué)概念,它們之間相互滲透,很多方程的問題需要用函數(shù)的知識和方法解決,很多函數(shù)的問題也需要用方程的方法的支援,函數(shù)與方程之間的辯證關(guān)系,形成了函數(shù)方程思想。 數(shù)形結(jié)合思想 數(shù)形結(jié)合是中學(xué)數(shù)學(xué)中四種重要思想方法之一,對于所研究的代數(shù)問題,有時可研究其對應(yīng)幾何的性質(zhì)使問題得以解決(以形助數(shù));或者對于所研究的幾何問題,可借助于對應(yīng)圖形的數(shù)量關(guān)系使問題得以解決(以數(shù)助形),這種解決問題的方法稱之為數(shù)形結(jié)合。
1.數(shù)形結(jié)合與數(shù)形轉(zhuǎn)化的目的是為了發(fā)揮形的生動性和直觀性,發(fā)揮數(shù)的思路的規(guī)范性與嚴密性,兩者相輔相成,揚長避短。 2.恩格斯是這樣來定義數(shù)學(xué)的:“數(shù)學(xué)是研究現(xiàn)實世界的量的關(guān)系與空間形式的科學(xué)”。
這就是說:數(shù)形結(jié)合是數(shù)學(xué)的本質(zhì)特征,宇宙間萬事萬物無不是數(shù)和形的和諧的統(tǒng)一。因此,數(shù)學(xué)學(xué)習(xí)中突出數(shù)形結(jié)合思想正是充分把握住了數(shù)學(xué)的精髓和靈魂。
3.數(shù)形結(jié)合的本質(zhì)是:幾何圖形的性質(zhì)反映了數(shù)量關(guān)系,數(shù)量關(guān)系決定了幾何圖形的性質(zhì)。 4.華羅庚先生曾指出:“數(shù)缺性時少直觀,形少數(shù)時難入微;數(shù)形結(jié)合百般好,隔裂分家萬事非?!?/p>
數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法的應(yīng)用大致分為兩種情形:或借助于數(shù)的精確性來闡明形的某些屬性,或者借助于形的幾何直觀性來闡明數(shù)之間的某種關(guān)系. 5.把數(shù)作為手段的數(shù)形結(jié)合主要體現(xiàn)在解析幾何中,歷年高考的解答題都有關(guān)于這個方面的考查(即用代數(shù)方法研究幾何問題)。而以形為手段的數(shù)形結(jié)合在高考客觀題中體現(xiàn)。
6.我們要抓住以下幾點數(shù)形結(jié)合的解題要領(lǐng): (1) 對于研究距離、角或面積的問題,可直接從幾何圖形入手進行求解即可; (2) 對于研究函數(shù)、方程或不等式(最值)的問題,可通過函數(shù)的圖象求解(函數(shù)的零點,頂點是關(guān)鍵點),作好知識的遷移與綜合運用; (3) 對于以下類型的問題需要注意:可分別通過構(gòu)造距離函數(shù)、斜率函數(shù)、截距函數(shù)、單位圓x2+y2=1上的點及余弦定理進行轉(zhuǎn)化達到解題目的。 分類討論的數(shù)學(xué)思想 分類討論是一種重要的數(shù)學(xué)思想方法,當問題的對象不能進行統(tǒng)一研究時,就需要對研究的對象進行分類,然后對每一類分別研究,給出每一類的結(jié)果,最終綜合各類結(jié)果得到整個問題的解答。
1.有關(guān)分類討論的數(shù)學(xué)問題需要運用分類討論思想來解決,引起分類討論的原因大致可歸納為如下幾種: (1)涉及的數(shù)學(xué)概念是分類討論的; (2)運用的數(shù)學(xué)定理、公式、或運算性質(zhì)、法則是分類給出的; (3)求解的數(shù)學(xué)問題的結(jié)論有多種情況或多種可能性; (4)數(shù)學(xué)問題中含有參變量,這些參變量的不同取值導(dǎo)致不同的結(jié)果的; (5)較復(fù)雜或非常規(guī)的數(shù)學(xué)問題,需要采取分類討論的解題策略來解決的。 2.分類討論是一種邏輯方法,在中學(xué)數(shù)學(xué)中有極廣泛的應(yīng)用。
根據(jù)不同標準可以有不同的分類方法,但分類必須從同一標準出發(fā),做到不重復(fù),不遺漏 ,包含各種情況,同時要有利于問題研究。 化歸與轉(zhuǎn)化思想 所謂化歸思想方法,就是在研究和解決有關(guān)數(shù)學(xué)問題時采用某種手段將問題通過變換使之轉(zhuǎn)化,進而達到解決的一種方法。
一般總是將復(fù)雜的問題通過變化轉(zhuǎn)化為簡單的問題,將難解問題通過變換轉(zhuǎn)化為容易求解的問題,將未解決的問題轉(zhuǎn)化為已解決的問題。 立體幾何中常用的轉(zhuǎn)化手段有 1.通過輔助平面轉(zhuǎn)化為平面問題,把已知元素和未知元素聚集在一個平面內(nèi),實現(xiàn)點線、線線、線面、面面位置關(guān)系的轉(zhuǎn)化; 2.平移和射影,通過平移或射影達到將立體幾何問題轉(zhuǎn)化為平面問題,化未知為已知的目的; 3.等積與割補; 4.類比和聯(lián)想; 5.曲與直的轉(zhuǎn)化; 6.體積比,面積比,長度比的轉(zhuǎn)化; 7.解析幾何本身的創(chuàng)建過程就是“數(shù)”與“形”之間互相轉(zhuǎn)化的過程。
解析幾何把數(shù)學(xué)的主要研究對象數(shù)量關(guān)系與幾何圖形聯(lián)系起來,把代數(shù)與幾何融合為一體。
1.函數(shù)思想: 把某一數(shù)學(xué)問題用函數(shù)表示出來,并且利用函數(shù)探究這個問題的一般規(guī)律。
這是最基本、最常用的數(shù)學(xué)方法。2.數(shù)形結(jié)合思想: 把代數(shù)和幾何相結(jié)合,例如對幾何問題用代數(shù)方法解答,對代數(shù)問題用幾何方法解答,這種方法在解析幾何里最常用。
例如求根號((a-1)^2+(b-1)^2)+根號(a^2+(b-1)^2)+根號((a-1)^2+b^2)+根號(a^2+b^2)的最小值,就可以把它放在坐標系中,把它轉(zhuǎn)化成一個點到(0,1)、(1,0)、(0,0)、(1,1)四點的距離,就可以求出它的最小值。3.分類討論思想: 當一個問題因為某種量的情況不同而有可能引起問題的結(jié)果不同時,需要對這個量的各種情況進行分類討論。
比如解不等式|a-1|>4的時候,就要討論a的取值情況。4.方程思想: 當一個問題可能與某個方程建立關(guān)聯(lián)時,可以構(gòu)造方程并對方程的性質(zhì)進行研究以解決這個問題。
例如證明柯西不等式的時候,就可以把柯西不等式轉(zhuǎn)化成一個二次方程的判別式。另外,還有歸納類比思想、轉(zhuǎn)化歸納思想、概率統(tǒng)計思想等數(shù)學(xué)思想,例如利用歸納類比思想可以對某種相類似的問題進行研究而得出他們的共同點,從而得出解決這些問題的一般方法。
轉(zhuǎn)化歸納思想是把一個較復(fù)雜問題轉(zhuǎn)化為另一個較簡單的問題并且對其方法進行歸納。概率統(tǒng)計思想是指通過概率統(tǒng)計解決一些實際問題,如摸獎的中獎率、某次考試的綜合分析等等。
另外,還可以用概率方法解決一些面積問題。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請在一個月內(nèi)通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學(xué)習(xí)鳥. 頁面生成時間:2.751秒