乘法與因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b(a^2+ab+b^2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理 判別式 b^2-4ac=0 注:方程有兩個(gè)相等的實(shí)根 b^2-4ac>0 注:方程有兩個(gè)不等的實(shí)根 b^2-4ac0 拋物線標(biāo)準(zhǔn)方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h 正棱錐側(cè)面積 S=1/2c*h' 正棱臺(tái)側(cè)面積 S=1/2(c+c')h' 圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l 弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長(zhǎng) 柱體體積公式 V=s*h 圓柱體 V=pi*r2h 定理: 1 過(guò)兩點(diǎn)有且只有一條直線 2 兩點(diǎn)之間線段最短 3 同角或等角的補(bǔ)角相等 4 同角或等角的余角相等 5 過(guò)一點(diǎn)有且只有一條直線和已知直線垂直 6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯(cuò)角相等,兩直線平行 11 同旁?xún)?nèi)角互補(bǔ),兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯(cuò)角相等 14 兩直線平行,同旁?xún)?nèi)角互補(bǔ) 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180° 18 推論1 直角三角形的兩個(gè)銳角互余 19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 作者:塵世的Angel 2008-11-22 22:48 回復(fù)此發(fā)言 --------------------------------------------------------------------------------2 高中數(shù)學(xué)公式 23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35 推論1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上 41 線段的垂直平分線可看。
高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類(lèi)解析一、集合與簡(jiǎn)易邏輯1.集合的元素具有確定性、無(wú)序性和互異性.2.對(duì)集合 , 時(shí),必須注意到“極端”情況: 或 ;求集合的子集時(shí)是否注意到 是任何集合的子集、是任何非空集合的真子集.3.對(duì)于含有 個(gè)元素的有限集合 ,其子集、真子集、非空子集、非空真子集的個(gè)數(shù)依次為 4.“交的補(bǔ)等于補(bǔ)的并,即 ”;“并的補(bǔ)等于補(bǔ)的交,即 ”.5.判斷命題的真假 關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”.6.“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”.7.四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”.原命題等價(jià)于逆否命題,但原命題與逆命題、否命題都不等價(jià).反證法分為三步:假設(shè)、推矛、得果.注意:命題的否定是“命題的非命題,也就是‘條件不變,僅否定結(jié)論’所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結(jié)論作為結(jié)論的所得命題” ?.8.充要條件二、函 數(shù)1.指數(shù)式、對(duì)數(shù)式,2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個(gè)集合 中的元素必有像,但第二個(gè)集合 中的元素不一定有原像( 中元素的像有且僅有下一個(gè),但 中元素的原像可能沒(méi)有,也可任意個(gè));函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集 的子集”.(2)函數(shù)圖像與 軸垂線至多一個(gè)公共點(diǎn),但與 軸垂線的公共點(diǎn)可能沒(méi)有,也可任意個(gè).(3)函數(shù)圖像一定是坐標(biāo)系中的曲線,但坐標(biāo)系中的曲線不一定能成為函數(shù)圖像.3.單調(diào)性和奇偶性(1)奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同.偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反.注意:(1)確定函數(shù)的奇偶性,務(wù)必先判定函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng).確定函數(shù)奇偶性的常用方法有:定義法、圖像法等等.對(duì)于偶函數(shù)而言有: .(2)若奇函數(shù)定義域中有0,則必有 .即 的定義域時(shí), 是 為奇函數(shù)的必要非充分條件.(3)確定函數(shù)的單調(diào)性或單調(diào)區(qū)間,在解答題中常用:定義法(取值、作差、鑒定)、導(dǎo)數(shù)法;在選擇、填空題中還有:數(shù)形結(jié)合法(圖像法)、特殊值法等等.(4)既奇又偶函數(shù)有無(wú)窮多個(gè)( ,定義域是關(guān)于原點(diǎn)對(duì)稱(chēng)的任意一個(gè)數(shù)集).(7)復(fù)合函數(shù)的單調(diào)性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性”.復(fù)合函數(shù)的奇偶性特點(diǎn)是:“內(nèi)偶則偶,內(nèi)奇同外”.復(fù)合函數(shù)要考慮定義域的變化。
(即復(fù)合有意義)4.對(duì)稱(chēng)性與周期性(以下結(jié)論要消化吸收,不可強(qiáng)記)(1)函數(shù) 與函數(shù) 的圖像關(guān)于直線 ( 軸)對(duì)稱(chēng).推廣一:如果函數(shù) 對(duì)于一切 ,都有 成立,那么 的圖像關(guān)于直線 (由“ 和的一半 確定”)對(duì)稱(chēng).推廣二:函數(shù) , 的圖像關(guān)于直線 (由 確定)對(duì)稱(chēng).(2)函數(shù) 與函數(shù) 的圖像關(guān)于直線 ( 軸)對(duì)稱(chēng).(3)函數(shù) 與函數(shù) 的圖像關(guān)于坐標(biāo)原點(diǎn)中心對(duì)稱(chēng).推廣:曲線 關(guān)于直線 的對(duì)稱(chēng)曲線是 ;曲線 關(guān)于直線 的對(duì)稱(chēng)曲線是 .(5)類(lèi)比“三角函數(shù)圖像”得:若 圖像有兩條對(duì)稱(chēng)軸 ,則 必是周期函數(shù),且一周期為 .如果 是R上的周期函數(shù),且一個(gè)周期為 ,那么 .特別:若 恒成立,則 .若 恒成立,則 .若 恒成立,則 .三、數(shù) 列1.數(shù)列的通項(xiàng)、數(shù)列項(xiàng)的項(xiàng)數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項(xiàng)與數(shù)列的前 項(xiàng)和公式的關(guān)系: (必要時(shí)請(qǐng)分類(lèi)討論).注意: ; .2.等差數(shù)列 中:(1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性.(2) ; .(3) 、也成等差數(shù)列.(4)兩等差數(shù)列對(duì)應(yīng)項(xiàng)和(差)組成的新數(shù)列仍成等差數(shù)列.(5) 仍成等差數(shù)列.(8)“首正”的遞等差數(shù)列中,前 項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和;“首負(fù)”的遞增等差數(shù)列中,前 項(xiàng)和的最小值是所有非正項(xiàng)之和;(9)有限等差數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定.若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”-“奇數(shù)項(xiàng)和”=總項(xiàng)數(shù)的一半與其公差的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和”-“偶數(shù)項(xiàng)和”=此數(shù)列的中項(xiàng).(10)兩數(shù)的等差中項(xiàng)惟一存在.在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),??紤]選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解.(11)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項(xiàng)法、通項(xiàng)法、和式法、圖像法(也就是說(shuō)數(shù)列是等差數(shù)列的充要條件主要有這五種形式).3.等比數(shù)列 中:(1)等比數(shù)列的符號(hào)特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項(xiàng)、公比與等比數(shù)列的單調(diào)性.(3) 、、成等比數(shù)列; 成等比數(shù)列 成等比數(shù)列.(4)兩等比數(shù)列對(duì)應(yīng)項(xiàng)積(商)組成的新數(shù)列仍成等比數(shù)列.(8)“首大于1”的正值遞減等比數(shù)列中,前 項(xiàng)積的最大值是所有大于或等于1的項(xiàng)的積;“首小于1”的正值遞增等比數(shù)列中,前 項(xiàng)積的最小值是所有小于或等于1的項(xiàng)的積;(9)有限等比數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定.若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”=“奇數(shù)項(xiàng)和”與“公比”的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和”=“首項(xiàng)”加上“公比”與“偶數(shù)項(xiàng)和”積的和.(10)并非任何兩數(shù)總有等比中項(xiàng).僅當(dāng)實(shí)數(shù) 同號(hào)時(shí),實(shí)數(shù) 存在等比中項(xiàng).對(duì)同號(hào)兩實(shí)數(shù) 的等比中項(xiàng)不僅存在,而且。
談?wù)勗鯓訉W(xué)好高中數(shù)學(xué) 和初中數(shù)學(xué)相比,高中數(shù)學(xué)的內(nèi)容多,抽象性、理論性強(qiáng),因?yàn)椴簧偻瑢W(xué)進(jìn)入高中之后很不適應(yīng),特別是高一年級(jí),進(jìn)校后,代數(shù)里首先遇到的是理論性很強(qiáng)的函數(shù),再加上立體幾何,空間概念、空間想象能力又不可能一下子就建立起來(lái),這就使一些初中數(shù)學(xué)學(xué)得還不錯(cuò)的同學(xué)不能很快地適應(yīng)而感到困難,以下就怎樣學(xué)好高中數(shù)學(xué)談幾點(diǎn)意見(jiàn)和建議。
一、首先要改變觀念。 初中階段,特別是初中三年級(jí),通過(guò)大量的練習(xí),可使你的成績(jī)有明顯的提高,這是因?yàn)槌踔袛?shù)學(xué)知識(shí)相對(duì)比較淺顯,更易于掌握,通過(guò)反復(fù)練習(xí),提高了熟練程度,即可提高成績(jī),既使是這樣,對(duì)有些問(wèn)題理解得不夠深刻甚至是不理解的。
例如在初中問(wèn)|a|=2時(shí),a等于什么,在中考中錯(cuò)的人極少,然而進(jìn)入高中后,老師問(wèn),如果|a|=2,且a 又如,前幾年北京四中高一年級(jí)的一個(gè)同學(xué)在高一上學(xué)期期中考試以后,曾向老師提出“抗議”說(shuō):“你們平時(shí)的作業(yè)也不多,測(cè)驗(yàn)也很少,我不會(huì)學(xué)”,這也正說(shuō)明了改變觀念的重要性。 高中數(shù)學(xué)的理論性、抽象性強(qiáng),就需要在對(duì)知識(shí)的理解上下功夫,要多思考,多研究。
二、提高聽(tīng)課的效率是關(guān)鍵。 學(xué)生學(xué)習(xí)期間,在課堂的時(shí)間占了一大部分。
因此聽(tīng)課的效率如何,決定著學(xué)習(xí)的基本狀況,提高聽(tīng)課效率應(yīng)注意以下幾個(gè)方面: 1、課前預(yù)習(xí)能提高聽(tīng)課的針對(duì)性。 預(yù)習(xí)中發(fā)現(xiàn)的難點(diǎn),就是聽(tīng)課的重點(diǎn);對(duì)預(yù)習(xí)中遇到的沒(méi)有掌握好的有關(guān)的舊知識(shí),可進(jìn)行補(bǔ)缺,以減少聽(tīng)課過(guò)程中的困難;有助于提高思維能力,預(yù)習(xí)后把自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己思維水平;預(yù)習(xí)還可以培養(yǎng)自己的自學(xué)能力。
2、聽(tīng)課過(guò)程中的科學(xué)。 首先應(yīng)做好課前的物質(zhì)準(zhǔn)備和精神準(zhǔn)備,以使得上課時(shí)不至于出現(xiàn)書(shū)、本等物丟三落四的現(xiàn)象;上課前也不應(yīng)做過(guò)于激烈的體育運(yùn)動(dòng)或看小書(shū)、下棋、打牌、激烈爭(zhēng)論等。
以免上課后還喘噓噓,或不能平靜下來(lái)。 其次就是聽(tīng)課要全神貫注。
全神貫注就是全身心地投入課堂學(xué)習(xí),耳到、眼到、心到、口到、手到。 耳到:就是專(zhuān)心聽(tīng)講,聽(tīng)老師如何講課,如何分析,如何歸納總結(jié),另外,還要聽(tīng)同學(xué)們的答問(wèn),看是否對(duì)自己有所啟發(fā)。
眼到:就是在聽(tīng)講的同時(shí)看課本和板書(shū),看老師講課的表情,手勢(shì)和演示實(shí)驗(yàn)的動(dòng)作,生動(dòng)而深刻的接受老師所要表達(dá)的思想。 心到:就是用心思考,跟上老師的數(shù)學(xué)思路,分析老師是如何抓住重點(diǎn),解決疑難的。
口到:就是在老師的指導(dǎo)下,主動(dòng)回答問(wèn)題或參加討論。 手到:就是在聽(tīng)、看、想、說(shuō)的基礎(chǔ)上劃出課文的重點(diǎn),記下講課的要點(diǎn)以及自己的感受或有創(chuàng)新思維的見(jiàn)解。
若能做到上述“五到”,精力便會(huì)高度集中,課堂所學(xué)的一切重要內(nèi)容便會(huì)在自己頭腦中留下深刻的印象。 3、特別注意老師講課的開(kāi)頭和結(jié)尾。
老師講課開(kāi)頭,一般是概括前節(jié)課的要點(diǎn)指出本節(jié)課要講的內(nèi)容,是把舊知識(shí)和新知識(shí)聯(lián)系起來(lái)的環(huán)節(jié),結(jié)尾常常是對(duì)一節(jié)課所講知識(shí)的歸納總結(jié),具有高度的概括性,是在理解的基礎(chǔ)上掌握本節(jié)知識(shí)方法的綱要。 4、要認(rèn)真把握好思維邏輯,分析問(wèn)題的思路和解決問(wèn)題的思想方法,堅(jiān)持下去,就一定能舉一反三,提高思維和解決問(wèn)題的能力。
此外還要特別注意老師講課中的提示。 老師講課中常常對(duì)一些重點(diǎn)難點(diǎn)會(huì)作出某些語(yǔ)言、語(yǔ)氣、甚至是某種動(dòng)作的提示。
最后一點(diǎn)就是作好筆記,筆記不是記錄而是將上述聽(tīng)課中的要點(diǎn),思維方法等作出簡(jiǎn)單扼要的記錄,以便復(fù)習(xí),消化,思考。 三、做好復(fù)習(xí)和總結(jié)工作。
1、做好及時(shí)的復(fù)習(xí)。 課完課的當(dāng)天,必須做好當(dāng)天的復(fù)習(xí)。
復(fù)習(xí)的有效方法不是一遍遍地看書(shū)或筆記,而是采取回憶式的復(fù)習(xí):先把書(shū),筆記合起來(lái)回憶上課老師講的內(nèi)容,例題:分析問(wèn)題的思路、方法等(也可邊想邊在草稿本上寫(xiě)一寫(xiě))盡量想得完整些。然后打開(kāi)筆記與書(shū)本,對(duì)照一下還有哪些沒(méi)記清的,把它補(bǔ)起來(lái),就使得當(dāng)天上課內(nèi)容鞏固下來(lái),同時(shí)也就檢查了當(dāng)天課堂聽(tīng)課的效果如何,也為改進(jìn)聽(tīng)課方法及提高聽(tīng)課效果提出必要的改進(jìn)措施。
2、做好單元復(fù)習(xí)。 學(xué)習(xí)一個(gè)單元后應(yīng)進(jìn)行階段復(fù)習(xí),復(fù)習(xí)方法也同及時(shí)復(fù)習(xí)一樣,采取回憶式復(fù)習(xí),而后與書(shū)、筆記相對(duì)照,使其內(nèi)容完善,而后應(yīng)做好單元小節(jié)。
3、做好單元小結(jié)。 單元小結(jié)內(nèi)容應(yīng)包括以下部分。
(1)本單元(章)的知識(shí)網(wǎng)絡(luò); (2)本章的基本思想與方法(應(yīng)以典型例題形式將其表達(dá)出來(lái)); (3)自我體會(huì):對(duì)本章內(nèi),自己做錯(cuò)的典型問(wèn)題應(yīng)有記載,分析其原因及正確答案,應(yīng)記錄下來(lái)本章你覺(jué)得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問(wèn)題,以便今后將其補(bǔ)上。 四、關(guān)于做練習(xí)題量的問(wèn)題 有不少同學(xué)把提高數(shù)學(xué)成績(jī)的希望寄托在大量做題上。
我認(rèn)為這是不妥當(dāng)?shù)?,我認(rèn)為,“不要以做題多少論英雄”,重要的不在做題多,而在于做題的效益要高。做題的目的在于檢查你學(xué)的知識(shí),方法是否掌握得很好。
如果你掌握得不準(zhǔn),甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準(zhǔn)確地把握住基本知識(shí)和方法的基礎(chǔ)上做一定量的練習(xí)是必要的。而對(duì)于中檔題,尢其要講究做題的效益,即做題后有多大收獲,這就需要在做題后進(jìn)行一定。
第一章:集合與常用邏輯用語(yǔ)。
第二章:函數(shù)與基本初等函數(shù)I。.第三章:導(dǎo)數(shù)及應(yīng)用。
第四章:三角函數(shù)、解三角形。
第五章:平面向量。
第六章:數(shù)列。
第七章:不等式。
第八章:立體幾何。
第九章:解析幾何。
第十章:計(jì)數(shù)原理。
第十一章:統(tǒng)計(jì)、統(tǒng)計(jì)案例。
第十二章:概率與統(tǒng)計(jì)。
第十三章:算法初步、推理與證明、復(fù)數(shù)。
知識(shí)點(diǎn):
三角函數(shù):
cos(A+B)=cosAcosB+sinAsinB
sin(A+B)=sinAcosB+cosAsinB
a/sinA=b/sinB=c/sinC=2R
a平方=b平方+c平方-2abcosA(其他得以此類(lèi)推)
S=1/2absinC(其他以此類(lèi)推)
S扇形=1/2*l*r
會(huì)畫(huà)sin、cos得圖像。還有知道Y=sinX(cosX)圖像得變換。
集合:
集合元素的3個(gè)特征:確定性、無(wú)序性、互異性。還有知道符號(hào)、子集、真子集。
函數(shù):
函數(shù)要注意、定義域、值域、對(duì)應(yīng)法則。
還有指數(shù)、指數(shù)函數(shù)的圖像。
就先說(shuō)這么多吧!
初中代數(shù)的教學(xué)要求①是: 1.使學(xué)生了解有理數(shù)、實(shí)數(shù)的有關(guān)概念,熟練掌握有理數(shù)的運(yùn)算法則,靈活運(yùn)用運(yùn)算律簡(jiǎn)化運(yùn)算;會(huì)查平方表、立方表、平方根表、立方根表或用計(jì)算器代替算表。
2.使學(xué)生了解有關(guān)代數(shù)式、整式、分式和二次根式的概念,掌握它們的性質(zhì)和運(yùn)算法則,能夠熟練地進(jìn)行整式、分式和二次根式的運(yùn)算以及多項(xiàng)式的因式分解。 3.使學(xué)生了解有關(guān)方程、方程組的概念;靈活運(yùn)用一元一次方程、二元一次方程組和一元二次方程的解法解方程和方程組,掌握分式方程和簡(jiǎn)單的二元二次方程組的解法,理解一元二次方程的根的判別式。
能夠分析等量關(guān)系列出方程或方程組解應(yīng)用題。 使學(xué)生了解一元一次不等式、一元一次不等式組的概念,會(huì)解一元一次不等式和一元一次不等式組,并把它們的解集在數(shù)軸上表示出來(lái)。
4.使學(xué)生理解平面直角坐標(biāo)系的概念,了解函數(shù)的意義,理解正比例函數(shù)、反比例函數(shù)、一次函數(shù)的概念和性質(zhì),理解二次函數(shù)的概念,會(huì)根據(jù)性質(zhì)畫(huà)出正比例函數(shù)、一次函數(shù)的圖象,會(huì)用描點(diǎn)法畫(huà)出反比例函數(shù)、二次函數(shù)的圖象。 5.使學(xué)生了解統(tǒng)計(jì)的思想,掌握一些常用的數(shù)據(jù)處理方法,能夠用統(tǒng)計(jì)的初步知識(shí)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
6.使學(xué)生掌握消元、降次、配方、換元等常用的數(shù)學(xué)方法,解決某些數(shù)學(xué)問(wèn)題,理解“特殊——一般——特殊”、“未知——已知”、用字母表示數(shù)、數(shù)形結(jié)合和把復(fù)雜問(wèn)題轉(zhuǎn)化成簡(jiǎn)單問(wèn)題等基本的思想方法。 7.使學(xué)生通過(guò)各種運(yùn)算和對(duì)代數(shù)式、方程、不等式的變形以及重要公式的推導(dǎo),通過(guò)用概念、法則、性質(zhì)進(jìn)行簡(jiǎn)單的推理,發(fā)展邏輯思維能力。
8.使學(xué)生了解已知與未知、特殊與一般、正與負(fù)、等與不等、常量與變量等辯證關(guān)系,以及反映在函數(shù)概念中的運(yùn)動(dòng)變化觀點(diǎn)。了解反映在數(shù)與式的運(yùn)算和求方程解的過(guò)程中的矛盾轉(zhuǎn)化的觀點(diǎn)。
同時(shí),利用有關(guān)的代數(shù)史料和社會(huì)主義建設(shè)成就,對(duì)學(xué)生進(jìn) 行思想教育。 教學(xué)內(nèi)容①和具體要求如下。
(一)有理數(shù) l·有理數(shù)的概念 有理數(shù)。數(shù)軸。
相反數(shù)。數(shù)的絕對(duì)值。
有理數(shù)大小的比較。 具體要求: (1)了解有理數(shù)的意義,會(huì)用正數(shù)與負(fù)數(shù)表示相反意義的量,以及按要求把給出的有理數(shù)歸類(lèi)。
(2)了解數(shù)軸、相反數(shù)、絕對(duì)值等概念和數(shù)軸的畫(huà)法,會(huì)用數(shù)軸上的點(diǎn)表示整數(shù)或分?jǐn)?shù)(以刻度尺為工具),會(huì)求有理數(shù)的相反數(shù)與絕對(duì)值(絕對(duì)值符號(hào)內(nèi)不含字母)。 (3)掌握有理數(shù)大小比較的法則,會(huì)用不等號(hào)連接兩個(gè)或兩個(gè)以上不同的有理數(shù)。
2。有理數(shù)的運(yùn)算 有理數(shù)的加法與減法。
代數(shù)和。加法運(yùn)算律。
有理數(shù)的乘法與除法。倒數(shù)。
乘法運(yùn)算律。有理數(shù)的乘方。
有理數(shù)的混合運(yùn)算。 科學(xué)記數(shù)法。
近似數(shù)與有效數(shù)字。平方表與立方表。
具體要求: (1)理解有理數(shù)的加、減、乘、除、乘方的意義,熟練掌握有理數(shù)的運(yùn)算法則、運(yùn)算律、運(yùn)算順序以及有理數(shù)的混合運(yùn)算,靈活運(yùn)用運(yùn)算律簡(jiǎn)化運(yùn)算。 (2)了解倒數(shù)概念,會(huì)求有理數(shù)的倒數(shù)。
(3)掌握大于10的有理數(shù)的科學(xué)記數(shù)法。 (4)了解近似數(shù)與有效數(shù)字的概念,會(huì)根據(jù)指定的精確度或有效數(shù)字的個(gè)數(shù),用四舍五人法求有理數(shù)的近似數(shù);會(huì)查平方表與立方表。
(5)了解有理數(shù)的加法與減法、乘法與除法可以相互轉(zhuǎn)化。 (二)整式的加減 代數(shù)式。
代數(shù)式的值。整式。
單項(xiàng)式。多項(xiàng)式。
合并同類(lèi)項(xiàng)。 去括號(hào)與添括號(hào)。
數(shù)與整式相乘。整式的加減法。
具體要求: (1)掌握用字母表示有理數(shù),了解用字母表示數(shù)是數(shù)學(xué)的一 大進(jìn)步。 (2)了解代數(shù)式、代數(shù)式的值的概念,會(huì)列出代數(shù)式表示簡(jiǎn)單的數(shù)量關(guān)系,會(huì)求代數(shù)式的值。
(3)了解整式、單項(xiàng)式及其系數(shù)與次數(shù)、多項(xiàng)式次數(shù)、項(xiàng)與項(xiàng)數(shù)的概念,會(huì)把一個(gè)多項(xiàng)式接某個(gè)字母降冪排列或升冪排列。 (4)掌握合并同類(lèi)項(xiàng)的方法,去括號(hào)、添括號(hào)的法則,熟練掌握數(shù)與整式相乘的運(yùn)算以及整式的加減運(yùn)算。
(5)通過(guò)用字母表示數(shù)、列代數(shù)式和求代數(shù)式的值、整式的加減,了解抽象概括的思維方法和特殊與一般的辯證關(guān)系。 (三)一元一次方程 等式。
等式的基本性質(zhì)。方程和方程的解。
解方程。 一元一次方程及其解法。
一元一次方程的應(yīng)用。 具體要求: (1)了解等式和方程的有關(guān)概念,掌握等式的基本性質(zhì),會(huì)檢驗(yàn)一個(gè)數(shù)是不是某個(gè)一元方程的解。
(2)了解一元一次方程的概念,靈活運(yùn)用等式的基本性質(zhì)和移項(xiàng)法則解一元一次方程,會(huì)對(duì)方程的解進(jìn)行檢驗(yàn)。 (3)能夠找出簡(jiǎn)單應(yīng)用題中的未知量和已知量,分析各量之間的關(guān)系,并能夠?qū)ふ业攘筷P(guān)系列出一元一次方程解簡(jiǎn)單的應(yīng)用題,會(huì)根據(jù)應(yīng)用題的實(shí)際意義,檢查求得的結(jié)果是否合理。
(4)通過(guò)解方程的教學(xué),了解“未知”可以轉(zhuǎn)化為“已知”的思想方法。 (四)二元一次方程組 二元一次方程及其解集。
方程組和它的解。解方程組。
用代人(消元)法、加減(消元)法解二元一次方程組。三元一次方程組及其解法舉例。
一次方程組的應(yīng)用。 具體要求: (1)了解二元一次方程的概念,會(huì)把二元一次方程化為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,會(huì)檢查一對(duì)數(shù)值是不是某個(gè)二元一次方程的一個(gè)解。
(2)了解方程組和它的解、解方程組等概念;會(huì)檢驗(yàn)一對(duì)數(shù)值是不是某個(gè)二元一次方程組的一個(gè)解。 (3)靈活運(yùn)用代人法、加減法解。
聲明:本網(wǎng)站尊重并保護(hù)知識(shí)產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護(hù)條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請(qǐng)?jiān)谝粋€(gè)月內(nèi)通知我們,我們會(huì)及時(shí)刪除。
蜀ICP備2020033479號(hào)-4 Copyright ? 2016 學(xué)習(xí)鳥(niǎo). 頁(yè)面生成時(shí)間:3.158秒